
Multifractal analysis in reciprocal space and the nature of the Fourier transform of self-similar

structures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 3769

(http://iopscience.iop.org/0305-4470/23/16/024)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) 3769-3797. Printed in the UK 

Multifractal analysis in reciprocal space and the nature of the 
Fourier transform of self-similar structures 

C Godrichet and J M Luck$ 
t Service de Physique du Solide et de RBsonance MagnCtique, CEA, Saclay, 91191 Gif-sur- 
Yvette cedex, France 
$ Service de Physique Theorique (Laboratoire de 1’Institut de Recherche Fondamentale 
du Commissariat a 1’Energie Atomique), CEA, Saclay, 91 191 Gif-sur-Yvette cedex, France 

Received 26 February 1990 

Abstract. We propose to use multifractal analysis in reciprocal space as a tool to charac- 
terise, in a statistical and global sense, the nature of the Fourier transform of geometrical 
models for atomic structures. This approach is especially adequate for shedding some new 
light on a class of structures introduced recently, which exhibit ‘singular scattering’. Using 
the language of measure theory, the Fourier intensity of these models is presumably singular 
continuous, and therefore represents an intermediate type of order, between periodic or 
quasiperiodic structures, characterised by Bragg peaks (atomic Fourier transform), and 
amorphous structures, which exhibit diffuse scattering (absolutely continuous Fourier 
transform). This general approach is illustrated in several examples of self-similar one- 
dimensional squences and structures, generated by substitutions. A special emphasis is put 
on the relationship between the nature of the Fourier intensity of these models and the 
f( a) spectrum obtained by multifractal analysis in reciprocal space. 

1. Introduction 

In recent years we have investigated, mostly in collaboration with S Aubry [ 1-51, the 
nature of the diffraction spectra, or Fourier transforms, of some ordered distributions 
of matter on the line. These studies were motivated by the discovery of quasicrystals, 
by theoretical research into the nature of the ground states of complex incommensurate 
structures, and by the desire to put these two fields into perspective. The aim of this 
paper is to show that multifractal analysis gives some new insight into the nature of 
the Fourier transforms of such structures. 

Multifractal analysis (see [6 ,7]  for reviews) is a tool for characterising, in a statistical 
sense, the nature of a positive measure. By definition, a positive measure describes 
how a positive quantity, such as mass, is distributed on a set, the support of the 
measure. This concept may be illustrated as follows. Take a can containing one unit 
of mass of paint, and spread it in some (possibly very irregular) fashion along a line. 
The mass-of-paint measure is a probability measure, since it is assumed to be normalised 
to unity. The total measure up to the point x on the line, denoted by M ( x ) ,  is also 
called the distribution function of the measure. It represents the mass already spread 
out up to x 

Mb) = [:m dP(X’). (1.1) 

In this paper, the analogue of the mass of paint is, e.g., the number of neutrons counted 
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in a diffraction experiment (given by the Fourier intensity), and the support is reciprocal 
space, i.e. the space of wavevectors q. The Fourier intensity measure of a structure 
will be defined more precisely in section 3. 

One distinguishes three pure types of positive measures. 
(i) Atomic measures, such as the probability measure of the binomial law, obtained 

by tossing a coin repetitively, where the number of heads x assumes only a countable 
set of values. M ( x )  is then a discontinuous staircase function (discontinuities take 
place at integer values of x in the example). 

(ii) Absolutely continuous (AC) measures, such as the normal law, correspond to 
a differentiable function M ( x ) .  The derivative M'(x) = p ( x )  is the density of the 
measure (a Gaussian function in the example). 

(iii) Singular continuous (sc) measures are much less known than the two previous 
classes. They are defined as the measures which have neither an atomic nor an AC 

component. For instance, the natural measure on the triadic Cantor set is sc. The 
associated function M ( x )  is known as a devil's staircase. But the support of a sc 
measure can also be as smooth as the full real line, or an interval. This is for instance, 
the case of the two-scale Cantor measure based upon the binomial distribution (see 
[7] and references therein). Similarly, the sc Fourier measures studied in the following 
will always have the full q line as support. 

The multifractal formalism describes in a global way the singular character of a 
probability measure. Let us recall briefly the main lines of this formalism. For the sake 
of simplicity, consider a probability measure supported by the unit interval [0, 11, 
instead of the whole real axis. This interval is divided into N = 1/e  boxes of size E. 

The ith box bears a probability 
( i + l ) E  

pi = liE d@(X') i = 1, . . . , N. (1.2) 

Thus p i  provides some information on the local behaviour of the measure around the 
point x = ie. In particular, suppose that one has the power law 

The exponent a gives an estimate of the strength of the local singularity of the measure 
at x = ie. Let us summarise briefly which kinds of local behaviour can be expected in 
the three pure types of measures recalled above. 

(i)  For an AC measure, we have p i  = P ( X ) E  when E + 0. Thus (1.3) holds, with (Y = 1, 
provided the density p ( x )  does not vanish. 

(ii) For a discrete atomic measure, of the form Z, q,6(x - x , ) ,  each box probability 
pi is either zero, or equal to one of the qa, for E small enough. In the latter case, (1.3) 
still holds, with a = 0. 

(iii) Finally, for a sc measure there is no general rule. In principle, any value of 
the local exponent a may occur. It may turn out as well that no simple behaviour at 
all is obeyed. 

The multifractal analysis is the appropriate tool for looking at the local singular 
behaviour of these types of measures, at least in a statistical sense that will become 
clear later on. The starting point of the analysis is the partition function, defined for 
any real number Q by 

p i  - e a  when E + 0. (1.3) 

N 

Z(Q)= c PO. 
i = l  

It is understood that the summation runs over non-empty boxes only (pi # 0). 

(1.4) 
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The measure d p  is said to be multifractal whenever one has the power-law (scaling) 
behaviour 

z(Q)-E"Q' (1.5) 
Since Z (  1) = 1 for any E ,  because of normalisation, one has T (  1) = 0. One is thus led 
to set 

T ( Q )  = (0- (1.6) 
D, is referred to as the generalised (RCnyi) dimension of index Q. For Q = O ,  the 
partition function Z(0) just counts the number of non-empty boxes of size E.  Thus Do 
is the Hausdorff, or fractal, dimension of the support of the measure. D, and D2 are 
referred to as the information and correlation dimensions of the measure, respectively. 
In the case of a 'regular' fractal measure, such as the triadic Cantor measure, one has 
D, = Do for any 0. Regular fractals are thus characterised by one single dimensionality. 

The usual interpretation of the existence of a continuous infinity of generalised 
dimensions D, is as follows. Assume that the values of x can be sorted according to 
their local exponent a, and that the set Sa of points x with a local exponent a has a 
dimension f ( a ) .  Once the measure is regularised at scale E as explained above, one 
can argue that the number Ne(&) of boxes such that the scaling law 
obeys a power law, namely 

Ne(&)- & - f ( O L ) .  

The partition function Z ( Q )  can then be recast as an integral over 
exponent a 

Z (  Q )  - d a  E ~ ~ - ~ ( ~ )  

(1.3) holds, itself 

(1.7) 
the values of the 

which is evaluated by the saddle-point method for E + 0. The condition that the exponent 
in (1.8) is stationary yields the value of Q, namely 

Q=- d f  
d a  

and the associated value of the exponent yields the quantity T ( Q )  

The function T (  Q )  is therefore obtained from f( a )  by means of a Legendre transform. 
The inverse transform is given by 

.(Q) = .Q-f(.). (1.10) 

d r  
dQ 

a = -  (1.11) 

together with (1.10). 
When the exponent Q varies continuously from --CO to CD, the quantities a and 

f ( a )  defined by (l.lO), (1.11) in terms of the exponent r ( Q )  describe a continuous 
curve in the ( a , f )  plane, known as the f(a) spectrum. In virtue of (1.9), the slope of 
this curve is Q itself. The top of the curve is reached for Q = O ;  the corresponding 
value off is the dimension Do of the support, whereas the value a. of a is not known 
a priori. With respect to this maximum, the right (respectively left) part of the curve 
corresponds to negative (respectively positive) values of the index Q. 

This long reminder of a well known formalism was necessary in order both to fix 
notation, and to underline the statistical nature of the information on a positive measure 
provided by its multifractal analysis. Let us recall that both atomic and AC measures 
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are expected to exhibit one single value of the local exponent a, namely a = 0 and 
(Y = 1, respectively, and therefore only sc measures should give rise to a non-degenerate 
f(a) spectrum. 

As mentioned above, the measures considered hereafter are Fourier intensities of 
one-dimensional structures, the support of which is the entire real q line. We will study 
more precisely the Fourier spectra of substitutional sequences, generated by substitu- 
tions, or inflation rules in more physical terms. Our motivation in doing so is as follows. 
In the study of ordered structures it is important to disentangle the interplay between 
the types of order present in the structures, and the properties of their Fourier 
transforms. In this respect, substitutional sequences provide plenty of interesting test 
cases, in spite of their one-dimensional character. Substitutions also appear in the 
study of real structures. Indeed, the Fibonacci sequence is naturally met in the study 
of quasicrystals. 

One of the questions raised in our previous works [4 ,5]  is the nature of the Fourier 
transforms of these sequences, or of the associated geometrical structures, as will be 
explained below. Just as any positive measure, the Fourier intensity of a structure may 
have three components, namely an atomic one (Bragg peaks), an AC one (diffuse 
scattering), and an sc one. In this paper we show how a multifractal analysis of the 
intensity measure, in particular through the f (  a) curve, gives some information on 
the nature of the Fourier transform, especially concerning the presence or the absence 
of an AC component in the spectrum. 

The organisation of this paper is as follows. Section 2 is devoted to a caveat, 
concerning the finite-size effects that are unavoidably met when coming to actual 
computations. We show on a simple example that numerical computations on finite 
samples, or with finite data series, may produce artefacts that could be taken for a 
real multifractal behaviour. We propose a way of getting around this problem, and 
define an accurate test of multifractality, that will be used systematically in the following. 
This criterion can certainly be useful in many other circumstances, where one is not 
sure a priori to deal with a multifractal measure. We recall in section 3 various useful 
definitions concerning substitutional sequences, as well as the basic notions of Fourier 
analysis. Section 4 is entirely devoted to the study of several examples of Fourier 
spectra associated with substitutional sequences, namely the well known Fibonacci 
sequence, two versions of the ‘circle sequence’ introduced in our previous studies 
[ 1-51, the Thue-Morse and Rudin-Shapiro arithmetic sequences, and finally two 
generic examples of sequences which do not have the PV property, to be described in 
subsection 3.3. In each case, the multifractal analysis of the Fourier intensity measure 
is compared with information available from other sources. A concise summary of this 
multifractal analysis in reciprocal space is presented in section 5. 

2. Discussion of convergence properties 

Since numerical computations necessarily deal with finite samples, and finite data 
series, a multifractal analysis may be plagued with artefacts coming from finite-size 
effects. The importance of such effects is illustrated in the following on a very simple 
and explicit example. 

Let us consider the following distribution of weights (box probabilities) 
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which are normalised (to leading order in N ) .  The associated partition function Z( Q) 
is easily evaluated for large N by replacing the sum in the definition (1.4) by an 
integral. We obtain 

(2.2) 
24 

Q+1'  
Z ( Q )  = Nl-Q- 

Since N plays the part of 1 / ~  in the discussion of section 1, a blind usage of (1.5) 
leads to the estimate 

T ( Q )  = 0- 1 +- ' ( Q )  
In N 

with I#J(Q) =ln (Q+ 1) - Q In 2. 

Hence T ( Q )  is asymptotically equal to Q - 1. As a consequence, a and f(a) are 
equal to 1 for all values of Q. The f(a) curve is thus degenerate, and reduces to one 
point, namely its top. This result could be expected since the weights defined by (2.1) 
correspond to an AC measure with support [O; 13. With the notation of section 1, we 
have E = 1/ N, x = i E ,  and p ( x )  = 2x. This distribution of weights has no multifractal 
character at all. 

Nevertheless, it is striking to observe that, as long as N is finite, the data yield a 
seemingly f(a) curve, which is not reduced to one point. This artefact is clearly a 
finite-size effect. 

This simple example leads us to emphasise a caveat: any seemingly multifractal 
f ( a )  curve might just be entirely due to finite-size effects. Two remarks are in order. 
The number N of data points enters the correction term in (2.3) through a logarithm. 
These effects are therefore dying off very slowly. Moreover, in any practical situation, 
the convergence is also affected by more or less random fluctuations, so that the 
l / ( ln  N )  terms cannot be eliminated by simple convergence acceleration schemes, 
based, e.g., on subtractions. 

We propose the following strategy to discriminate a real multifractal behaviour 
from a finite-size artefact. The idea consists in performing a careful local analysis of 
the f ( a )  curve in the vicinity of its top, which corresponds to Q + 0. Indeed, the top 
of the curve obviously corresponds to the maximal value off; and hence to the maximal 
number of boxes N, ( E), by virtue of the estimate (1.7). This region is therefore expected 
to be the least affected by any fluctuation or finite-size effect. In a more quantitative 
way, consider the curvature of the f(a) curve at its top. Equations (1.9)-(1.11) imply 
that this quantity is given by 

The estimate (2.3) leads to 

i.e. C = -In N in the present case. The curvatures of the seemingly f ( a )  curves corre- 
sponding to successive finite sizes diverge logarithmically with the number of data 
points. This divergence demonstrates that no smooth f ( a )  curve exists in the limit of 
an infinite system. In other words, as expected, the AC measure under consideration 
has no multifractal spectrum. 

The evaluation of the curvature C will be done systematically for the various 
examples studied in the following. In some cases, extracting the full scaling function 
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c$( Q) may provide some additional information. Fortunately, in the examples that will 
be considered below, namely substitutional sequences, In N will turn out to be a very 
natural variable. 

These considerations can be extended to an arbitrary AC distribution on [O; 11, 
given by its density g(x).  The normalised weights are 

with the definition 

m ( Q )  = 1' [g(x)lg dx 
0 

of the moment function. It is easily found that 

Hence T ( Q )  exhibits the very same scaling form as in (2.3), with 

4 ( Q )  = 0 In m(1)  -In ~ ( 0 ) .  
We have in particular 

- 4"(0) = m"(0) - m'(0)2 
2 

In2 g\x) dx - ( Io1 In g(x) dx) . 
= lo1 (2.10) 

The right-hand side is manifestly positive. Equation (2.10) thus yields a negative 
amplitude for the curvature C, once inserted into (2.5), as it should. 

3. Substitutional sequences and structures, and their Fourier spectra 

In this section we recall various definitions concerning substitutional sequences, and 
the associated structural models, as well as some generalities about their Fourier 
transforms. 

3.1. Substitutional sequences and structures 

A substitutional sequence is generated by a substitution a acting on an alphabet, 
namely a finite number of letters {A ,  B, C, . . .}. Let us illustrate this definition on the 
simple and well known example of the Fibonacci sequence. The Fibonacci sequence 
is perhaps the simplest of all self-similar structures. It can be viewed as the one- 
dimensional analogue of the two-dimensional Penrose tilings, and the three- 
dimensional tilings with, e.g., icosahedral symmetry, used as structural models for 
quasicrystals. In this simple case, the alphabtt { A ,  B} consists of two letters. By the 
substitution uF they are transformed according to the rule 
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We introduce the notation 

A, = o ; ( A )  B, = a;( B )  (3.2) 

for the words obtained by acting n times with uF on the letters A and B. 
It is easily realised that the words defined in (3.2) obey the following recursion: 

An+, = Bn B,+i = B A , .  (3.3) 

The words B, can be eliminated from (3.3). We obtain thus a three-term recursion 
relation for the A,, namely 

An+2 = An+,An (3.4) 

This last property is a peculiarity of the Fibonacci substitution, which will not hold 
in general. We will therefore stick to the general formalism, using two letters. 

Let us denote by v t  and vf: the total numbers of letters contained in the words A, 
and B,. In order to evaluate these numbers, it is advantageous to introduce the matrix 
M of the substitution, usually defined as 

(3.5) 
number of A in A ,  
number of B in A ,  

number of A in B,  
number of B in B1 

M = (  

In the present case, this definition yields 

M = ( Y  :>. 

The numbers of letters introduced above obey the recursion relation 

(3.6) 

with the initial conditions v t  = v," = 1, and where M' denotes the transpose of the 
matrix M. 

We are thus led to evaluate the successive powers of the substitution matrix. In 
the present case, we have 

where the Fibonacci numbers are defined by 

F,, = F,-, + Fn-2 with F,,=O, F,=l. 

We are thus left with 
(3.9) 

v: = F,+l vf: = F,+*. (3.10) 

The Fibonacci numbers are deeply connected with the golden mean T = ;( 1 + 6). We 
have in particular 

(3.11) 

This last identity is clearly related to the fact that the eigenvalues of the matrix M are 
T and - 7 - l .  
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When the generation label n becomes large, the words A, converge to the infinite 
Fibonacci sequence. From the infinite sequence of letters, one may build two different 
objects, hereafter called the abstract sequence and the structural model. 

(i)  In the case of the abstract sequence, the letters A and B are interpreted as 
numbers, according to some correspondence rule, such as e.g. 

A: ~ = l  B:  E = - l  (3.12) 

or any other choice. With the kth letter of the infinite sequence is thus associated a 
number &k. The abstract sequence, the Fourier transform of which will be considered 
in the following, is just the infinite sequence of numbers { & k } .  

(ii) In the case of the structural model, with the letters A and B are associated 
two real numbers, to be interpreted as bond lengths ( l A ,  I,), according to 

A: 1 ~ = 1 + ~ $  B: I g = 1  (3.13) 

where the dimensionless parameter 5 measures how inhomogeneous, i.e. how far from 
periodic, the structure is. A one-dimensional geometrical structure is generated by 
putting atoms on a line, each pair of neighbouring atoms being separated by a bond 
length lA or ZB, according to the sequence of letters. Hence the object, the Fourier 
transform of which will be considered in the following, is the atomic density 

(3.14) 

where uk is the position of the kth atom on the line ( uk - uk-l= EA or I, ; uo = 0). 
For the structural model, the lengths of the finite structures associated with the 

words A, and B, are denoted by 1; and l:, respectively. These lengths obey the same 
matricial recursion relation as the numbers of letters, namely 

(3.15) 

with the initial values 1: = lA and 1; = I,. We therefore have 

l f =  F~- , I*+ F,ZB lf l= F,lA + Fn+llB, (3.16) 

The mean interatomic distance a is defined, by comparing (3.10), and (3.16), as the limit 
I A  ,B 

(3.17) 

It is easy to check that the following differences, which have been evaluated by means 
of (3.11): 

l ~ ~ l - F f l + l a = l ~ - F f l + l a = ( l B - Z ~ ) ( - ~ ~ ’ ) n ~ l  (3.18) 

go to zero in the n -$ CO limit. This last property is related to the existence of an average 
lattice [I-31. As will be explained below, it is also related to the nature of the Fourier 
spectrum of the structure. 

3.2. Fourier transforms and intensity measures 

We now summarise some basic concepts of Fourier analysis. Let us denote by gt the 
Fourier amplitudes of the abstract sequence, and by Gf those of the structural model, 
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associated in both cases with the words A,,. We have by definition 
N 

g t ( q )  = C &k e-iqk 
k = l  

N 
G t ( q )  = C e-iquk 

k =  1 

( 3 . 1 9 ~ )  

(3.19b) 

where N = v t  is the number of letters in the word A,. 
The structure factors, or intensities, associated with these amplitudes are defined as 

(3.20) 

Here and throughout this section, for the sake of simplicity, we prefer to use the generic 
notation G N ( q )  and s N ( q )  for the quantities defined above, using as a subscript N, 
the sample size, namely the number of terms in the Fourier sums, or the number of atoms. 

When N becomes large, the intensities s N ( q )  may have very bad convergence 
properties (see below). In any case, from a rigorous viewpoint, the only well defined 
concept attached to the Fourier spectrum of the infinite sequence (or structure) is its 
intensity measure. This positive measure is defined by considering the distribution 
function, or integrated intensity 

H ( q )  = lim I,' S , ( q ' )  dq'. (3.21) 

This quantity, analogous to M ( x )  in (l.l), is well behaved in any circumstance. The 
intensity S ( q )  of the infinite sequence (or structure), defined formally by 

d H ( q )  = S ( q )  dq (3.22) 

has thus to be understood as a generalised function, or distribution. 
Going back to a finite sample having N atoms, one can distinguish four possible 

kinds of local behaviour of the Fourier intensity, according to the growth of the 
amplitude G N ( q )  as a function of N. 

N - a ,  

( i )  Bragg peaks. These are values qo of q such that 

G N ( q 0 )  C(q0IN (3.23) 
C(qo) being some complex amplitude. H ( q )  has then a discontinuity of strength 
lC(qO)l2 at q = qo,  and the structure factor S ( q )  contains a delta function IC(q,)126(q - 
4,). For periodic, and quasiperiodic (almost periodic) structures, the whole intensity 
is concentrated in Bragg peaks. In the language reviewed in section 1, these Fourier 
intensity measures are atomic. 

(ii) Diffuse scattering. This situation corresponds to the structure factor S ( q )  being 
a smooth function. This is, for instance, the case generically in amorphous structures, 
for which the Fourier amplitude GN ( q )  grows typically as NI/'. The associated Fourier 
intensity measure is then AC (absolutely continuous). 

(iii) Singular scattering. Suppose that one has for some wavevector qo the power law 

G N  ( 4 0 )  - N Y  w i t h ; < r < l .  (3.24) 
We have then S,(qo) - NZy-'. Moreover, a finite-size scaling argument shows that, 
for q +  qo and N large, s N ( q )  is a function of the product N(q-q,)  only. This 
observation leads to the following prediction: 

(3.25) IH(q) - H(90)I - 14 - 90/= with LY = 2( 1 - y )  
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concerning the integrated intensity of the infinite structure. The local exponents (Y and 
y depend on qo a priori. Equation (3.25) is clearly very reminiscent of (1 ,3 ) .  Since 
O< (Y < 1, the intensity S(qo),  which is formally equal to the derivative of H ( q )  at qo, 
is divergent, but ‘less infinite’ than in the presence of a Bragg peak, which corresponds 
formally to y = 1 (a = 0). It has been shown explicitly [ 5 ] ,  for the example of a structure 
generated by a circle map, to be described in section 4.2, that the behaviour (3.25) 
holds around a dense set of values of the wavevector. In that case, y depends indeed 
on qo. The Fourier intensity measure in conjectured to be sc (singular continuous). 

(iv) Finally, it may turn out that the Fourier amplitude G N ( q )  obeys no simple 
behaviour at all, considered as a function of the sample size. We suspect that, in the 
case of sc Fourier transforms, generic values of the wavevector do fall into this last class. 

This last remark motivates our quest for a statistical study of the behaviour of the 
Fourier amplitude, as a function of the sample size N and of the wavevector q, which 
is precisely provided by the multifractal analysis described below. 

Before going into this study, we should mention that a simpler version of such a 
statistical and global approach of the behaviour of the Fourier spectrum has been 
introduced for the first time in [4], where the following integral was considered: 

(3.26) 

with, e.g., qmax = 2a/a ,  where a is the mean interatomic distance. From a heuristic 
viewpoint, the behaviour of this integral depends on the nature of the Fourier spectrum 
(intensity measure). More precisely the behaviour is as follows. 

(a) If the Fourier spectrum is atomic, i.e. made of Bragg peaks, the integral I ,  
should fall off as N - ” 2 .  This law can be checked explicitly for periodic structures (up 
to logarithms). 

(b) If the spectrum is absolutely continuous, i.e. if S ( q )  is a smooth function, I ,  
should go to the constant limit I 

(c) If the spectrum is singular continuous, one might suspect an intermediate kind 
of dependence of I N  on the sample size, like, e.g., I N  - N - P ,  with O <  p <f. Such a 
non-trivial power-law behaviour has indeed been observed numerically in [4], in the 
example mentioned above. This discovery was one of the motivations of the present 
study. As a matter of fact, the multifractal analysis found hereafter is a systematic 
generalisation of that approach. Indeed, the exponent p discussed above will be related 
in subsection 4.2 to the RCnyi dimension Dl12.  

dqlS(q)l”*, with increasing N. 

3.3. Recursion relations between Fourier amplitudes, and consequences 

Let us now come back to the particular case of the substitutional sequences and 
structures described above, illustrating again the definitions on the example of the 
Fibonacci substitution. A natural way of evaluating the Fourier amplitudes of self- 
similar sequences (or structures), for both analytical and numerical purposes, is 
provided by deriving recursion relations between amplitudes associated with finite 
words. Such relations are a mere consequence of recursion relations (3.3) between the 
words themselves. We have thus 

A B gn+I = gn 

G t + l  = Gf Gf+l  = GE+exp(- iqlf)Gt  

(3.27 a )  

(3.276) 
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according to whether we look at the Fourier transform of the abstract sequence itself, 
or at the transform of the structural model. In the case of the Fibonacci sequence, the 
alternative form (3.4) yields a three-term recursion relation for the Fourier amplitudes 
corresponding to the words A,  alone, namely 

gt+*(q) = gf+l(q) + exp(-iqvt+Jgf(q) (3.28a) 
Gt+2(q) = Gf+i(q)+exp(-iqlf+,,)Gt(q). (3.28b) 

By virtue of (3.12, (3.13), the initial conditions for the above formulae are 
gt = g; 5 -e-iq (3.29 a )  

G t  = exp(-iql,) = exp[-iq(l+ e ) ]  (3.29 b ) 
Relations such as (3.27) will be used extensively as an efficient way of evaluating the 
Fourier amplitudes numerically, and the weights p i  appearing in the multifractal 
formalism (see subsection 3.4). The relations given above also permit one to obtain in 
a rigorous way some information on the local behaviour of the Fourier amplitudes. 

Indeed, in the context of one-dimensional structural models generated by substitu- 
tions or, in the language of physicists, by inflation rules, the general question ‘which 
substitutions give rise to an atomic Fourier spectrum?’ has been addressed by Bombieri 
and Taylor (BT) [SI, who have shown that, generically, a necessary and sufficient 
condition for the presence of an atomic component (i.e. Bragg peaks) in the Fourier 
spectrum is that the substitution have the PV (Pisot-Vijayaraghavan) property, defined 
as follows. 

Consider an arbitrary substitution a, acting on p letters. The PV property has to do 
with the eigenvalues of the associated matrix M. These eigenvalues are the p zeros of 
the characteristic polynomial P ( A )  = det(A1 - M). Assume that P is irreducible over 
the integers, i.e. cannot be written as the product of two polynomials with integer 
coefficients. Since M has non-negative entries, the Perron-Frobenius theorem states 
that the largest eigenvalue h i  is real and larger than unity. By definition, the substitution 
U is said to have the PV property, and the number A ,  is said to be a PV number, if all 
other eigenvalues h Z , .  . . , A ,  are smaller than unity in modulus. With the above 
assumption of irreducibility, the PV property is unambiguously attached to the algebraic 
integer A I ,  since the other ( p  - 1 )  eigenvalues are its algebraic conjugates. 

Let us illustrate first how the argument works on the example of the Fibonacci 
sequence. It is well known that this structure is quasiperiodic, and thus has a purely 
atomic spectrum. This property may be shown by several approaches, in particular by 
using the cut and project method. In the present context, we can assert that, if the 
Fourier intensity contains a Bragg peak for the value q,, of the wavevector q, then 
Gf(qo) has to grow linearly with the sample size, namely 

Gt(q0) = C(qo)~ ,+2 .  (3.30) 
This maximal growth is only obtained when the phase factor in (3.28b) goes asymptoti- 
cally to unity in the n + CO limit. This condition is equivalent to 

G; = exp( -iqlB) = e-iq. 

(3.31) 

Using equations (3.16), (3.171, one finds that the values of q fulfilling the condition 
(3 .31)  are given by (see e.g. appendix B of [ 5 ]  for an elementary proof) 

4 - l t + O  m o d l .  
2T 

(3.32) 
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where j and k are arbitrary integers, and T is the golden mean. These values of q 
correspond to the Bragg peaks of the model. The quasiperiodic nature of the Fibonacci 
chain is thus recovered. On the other hand, the substitution matrix M, given in (3.6), 
has a characteristic polynomial P( A )  = A *  - A - 1, and eigenvalues A ,  = 7 and A 2  = - T - ' .  

The Fibonacci substitution thus has the PV property. 
More generally, BT have shown that, when the largest eigenvalue A I  of a substitution 

is a PV number, the Fourier spectrum of the associated structure has generically an 
atomic component. This result basically relies on the following theorem, due to Pisot 
[9]. If 

xO"+O mod1 (3.33) 

for some real numbers x and 8, with O greater than unity, then 8 is a PV number, and 
x belongs to some module over the integers, related to 8 in a known fashion. 

Another way of realising the importance of the subleading eigenvalues of the 
substitution matrix M is to consider the differences evaluated in (3.18) in the case of 
the Fibonacci chain. For a generic substitution, it is easily seen that these differences 
behave as lA21n, where A 2  denotes the second largest eigenvalue. If lA21 is less that unity, 
the differences go to zero as n+m, and the structure has a bounded fluctuation with 
respect to an average lattice. Conversely, if \ A 2 ]  is larger than unity, the density 
fluctuation of the structure diverges with the sample size as N', where the fluctuation 
exponent is 

(3.34) 

See [lo] for a detailed study of this question. 
Let us end this section with a word of caution. The BT argument does not imply 

that the Fourier intensity measure is purely atomic in the case of a substitution with 
the PV property. In other words, it does not rule out the presence of a continuous 
(either AC or sc) component in the Fourier spectrum. But, from a heuristic viewpoint, 
mixed Fourier spectra are expected to be rather exceptional. 

3.4. Multijractal analysis of Fourier intensities 

In order to use the multifractal formalism, the essential ingredient is the definition of 
the probability weights pi. A straighforward use of the formalism recalled in section 
1 would require the evaluation of the exact integrals of the intensity measure d H ( q )  
characteristic of the infinite sequences (or structures), over small segments of length 
E in q space. This procedure, which would need infinite computer time, is to be replaced 
by a carefully chosen approximate scheme. 

The recursion relations derived above provide the appropriate tool for doing so. 
Indeed, rather than partitioning 4 space into boxes, we choose to consider periodic 
approximants of the infinite sequences (or structures), obtained by repeating infinitely 
many times the finite words A,,. The contact between both approaches can be made 
via general finite-size scaling arguments. 

Consider first the Fourier transform of an abstract sequence. Let A,, be the finite 
word generated by acting n times with a substitution (T on the letter A. We build an 
infinite sequence by repeating this word in a periodic way. Let N = v t  be the number 
of letters in this word. It is well known that the Fourier transform of the periodic 
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sequence consists of Bragg peaks, located at equally spaced wavevectors, of the form 

2 rm 
N q m  =- (3.35) 

where m runs over the integers. The associated amplitudes are, with the notation of 
subsection 3.2: 

(3.36) 

The Fourier amplitudes defined by ( 3 . 1 9 ~ )  are manifestly periodic functions of q, with 
period 2 r .  We can therefore restrict the analysis to one period in reciprocal space (i.e. 
one Brillouin zone), and consider only the wavevectors corresponding to  m = 1, . . . . N. 

The weights that will enter the multifractal analysis are taken equal to the associated 
intensities, so normalised as to build up a probability measure, namely 

N 
with S = (Cm(’. ICmI’ 

P m  =- S m = l  
(3.37) 

We turn now to the analysis of the Fourier transform of a structural model generated 
by a substitution v. We use the above procedure, namely repeating the finite structures 
associated with the words A,. The main difference lies in the fact that the length L =  1: 
of the structure is no longer an integer, and that the associated Fourier amplitude has 
no more periodicity in q space. The Bragg peaks are now located at 

2 rm 
L q m  =- 

where m runs over the integers, and the associated amplitudes are 

(3.38) 

(3.39) 

For obvious practical reasons, instead of considering the whole real q axis, we are 
bound to work with a finite number M of wavevectors. In the present case, there is 
some arbitrariness in the choice of M. In numerical calculations, we have chosen 
1 S m s M ,  with M = zN, and typically z = 1-5, so that the investigated wavevectors 
range from q = 0 to qmax = z ( 2 r /  a ) ,  since L = Na,  where a denotes the mean interatomic 
distance. z is thus the number of ‘Brillouin zones’ that are studied. 

Equipped with the above definitions of the pi, we can use the formalism recalled 
in section 1 to evaluate the f (a) curve associated with any finite sample. The only 
technicality worth mentioning is that numerical differentiation can be avoided. Indeed, 
the derivatives of the partition function WRT Q can be evaluated directly as follows: 

The values of (Y and f are then simply given by 

(3.40) 

(3.41) 
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and the curvature C of the ! ( a )  curve at its top has the form 

1 1 (Z’(0)’ --- Z”(0)) 
C - l n  M ~ ( 0 ) ~  Z(O) * 

(3.42) 

In (3.41), (3.42), M denotes the number of wavevectors involved in the analysis. We 
have the estimate 

l n M = n l n A ,  n+co (3.43) 

where A , denotes the Perron-Frobenius eigenvalue of the substitution. 
It will become clear in section 4 that the most subtle point resides in the extrapolation 

of the data to the thermodynamic limit of an infinite sequence (or structure). 
We end this section by discussing the interpretation of t h e f ( a )  spectrum associated 

with a Fourier transform. Besides the general aspects discussed in section 1, the 
following points are worth a comment. 

(a) The abscissa a,  of the top of the f(a) curve, corresponding to Q = 0, is to be 
interpreted as the exponent characterising the local singularity of the intensity measure 
at a generic value of the wavevector q, i.e. the strength o f a  generic singularity. We have 
a,> 1 whenever the intensity measure is a genuine multifractal. The associated value 
o f f  is equal to unity, since the support of the Fourier transform is the whole q axis 
in any circumstance. 

(b) The extrema1 values amin and a,,, of the abscissa of the f(a) curve represent 
the minimal and maximal values of the singularity exponent a that occur with a 
‘reasonable’ weight in reciprocal space. Subsection 4.2 will deal with an example where 
it has been shown explicitly that a countable set of wavevectors exhibit a local exponent 
a < amin * 

(c) The value a , ,  obtained for Q = 1, obeys the relationsf(a,) = a ,  = D,, with the 
notation of section 1. This quantity is referred to as the information dimension of the 
Fourier intensity measure, or sometimes just as the dimension of the measure. Its 
distance to unity is a faithful measurement of how singular the Fourier transform is. 

(d) The value d p = f ( l ) ,  corresponding to a = 1, represents the dimension of the 
set of wavevectors q for which the local singularity exponent a is less than unity. In 
more physical terms, dp represents thus the dimension ofthe set ofpeaks (in the general 
sense of singular scattering peaks, defined in subsection 3.2). This quantity is therefore, 

Table 1. Summary of the multifractal analysis of the Fourier intensity measure of the 
sequences and structures considered in section 4. For each example, we give the nature of 
the Fourier intensity, whether it is a multifractal measure or not, and list the numerical 
values of some quantitative characteristics, described in subsection 3.4. Symbols are as 
follows: (1) conjectured result, (2) conjectured exact value, (3) conjectured exact value 
given in (4.27). 

Sequence FT Multifractality a ,  a m i n  amax a1 4 
~~ 

0 
0 

- - - no 2‘2’ Fibonacci QP 

Circle (structure) sc(” Yes 1.60 0.15 3.8 0.55 0.86 
0.73 0.89 Thue-Morse sc yes (partial) 2‘*’ 0.41(3) - 

0.44 0.83 
Ternary non-Pv se(’’ yes 1.36 0.2 3.6 0.64 0.92 

- - Circle (abstract) QP no 2‘2’ - 

Rudin-Shapiro AC no 1 - - - - 
Binary non-pv sc(” yes (partial) 2‘2’ 0.15 - 
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at least in principle, accessible to experiment, via a careful box-counting type of data 
analysis. 

These quantitative characteristics provided by the multifractal analysis of a Fourier 
transform are listed in table 1, and commented on in the conclusion, for each example 
studied in section 4. 

4. Examples 

In this section we present a detailed study of the statistical properties of the Fourier 
transforms of various one-dimensional self-similar sequences and structures, generated 
by substitution, using the multifractal formalism described above. 

4.1. The Fibonacci sequence 

The Fibonacci sequence has already been defined in section 3, where it was used 
extensively to illustrate various concepts and definitions associated with substitutional 
sequences and structures. 

It is well known that the Fibonacci sequence is quasiperiodic. More precisely, the 
Fourier intensity S (  q )  of the abstract Fibonacci sequence consists of delta functions, 
i.e. Bragg peaks, located at values of the wavevector q of the form 

q = 2.rr(jS k7) (4.1) 

where j and k are two arbitrary integers, and 7 denotes the golden mean, defined in 
subsection 3.1. The intensities of the Bragg peaks are 

{ yn2( k m ) /  (k.rr)* for k # O  
for k = 0. Ak = 1 c k  = -4  (4.2) 

The binary structural model, constructed from the Fibonacci sequence by putting 
short and long bonds on a line, according to (3.13), has a very similar Fourier transform, 
with Bragg peaks still given by (4.1), where q is replaced by the product qa, with a 
being the mean interatomic distance, defined in (3.17). 

This first example is therefore a test case for the multifractal analysis of a Fourier 
intensity, since the answer to the key question, namely the nature of the Fourier 
transform, is known from other approaches. Since the Fourier transform is 
quasiperiodic, we expect that the Fourier intensity measure is not multifractal. However, 
since the coefficients Ck of (4.2) exhibit a very slow fall-off, some anomalous conver- 
gence properties could be suspected. 

The Fourier amplitudes g t ( q )  and g f ( q )  of the abstract Fibonacci sequence, and 
the amplitudes Gf( q )  and Gf( q )  of the binary structural model, corresponding to the 
successive iterates of the letters A and B, are easily obtained from the recursion relations 
(3.27), with the initial values (3.29). 

In order to test the multifractality of the Fourier intensity, or rather its lack of 
multifractality, we have employed the curvature C of the f( a) curve at its top, defined 
by (2.4). Figure 1 shows this quantity, evaluated for the words A,,, plotted against the 
generation label n, for both the abstract sequence (lower data) and the structural model 
(upper data). In the latter case, the number z of ‘Brillouin zones’ defined in subsection 
3.4 is equal to 1 .  The parameter .$ entering the definition of bond lenths is 6 = -7-*, 
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Figure 1. Plot of the curvature C of the apparent 
f(e) curves of the abstract Fibonacci sequence 
(lower data), and the associated structural model 
(upper data), against the generation label n. The 
straight line with slope s = -0.073 is meant as a guide 
for the eye. 

161 I I 
0 0 05 0 10 0 15 

1 / n  

Figure 2. Plot of the abscissa eo of the top of the 
apparent f ( a )  curves of the Fibonacci sequence, 
against the reciprocal of the generation label n. Both 
the lower data (abstract Fibonacci sequence) and the 
upper data (structural model) converge linearly to 
the limit eo = 2. 

so that the ratio of both bond lengths be l B /  la = T, corresponding to the usual representa- 
tion of the Fibonacci chain. In any case, we have checked that the results presented 
here do not depend in a sensitive way on the choice of 6. 

The last data points correspond to n = 28, i.e. F29 = 514 229 letters or atoms, and 
as many values of q. Both series of data are clearly asymptotically linear for large n, 
with a common slope s == -0.073, shown as a full line on the plot. Hence the curvature 
C diverges linearly with the generation number, just as for the simple example studied 
in section 2. The f(a) curves of finite samples therefore become singular as their size 
grows, and the limit measure, namely the Fourier intensity of the infinite chain, is not 
multifractal. 

Some aspects of the apparent f(a) curves associated with the finite words A, can 
nevertheless be characterised in a quantitative way. The values of cyo, corresponding 
to the top of t hey (&)  curves, are plotted on figure 2, against l /n,  up to n =28, where 
n denotes the generation label, for both the abstract sequence (lower data) and the 
structural model (upper data). A linear convergence toward the limit a. = 2 shows up 
rather clearly in both cases. As a matter of fact, this simple limit value can be explained 
by means of the following heuristic argument. Remember that a. is to be interpreted 
as the generic value of the singularity exponent a observed, at least in some statistical 
sense, for almost all values of q. 

Consider a generic value q* of q, and set x* = qJ(277). From a heuristic viewpoint, 
the behaviour of the distribution function H ( q )  around q+ is dominated by the Bragg 
peaks of (4.1) that lie closest to q = q*. The problem is thus to approximate a generic 
number x+ by numbers of the form xj ,k  = j  -I- kT. We do not aim at dealing with this 
problem in fully rigorous terms. For the case under consideration, it has been argued, 
e.g. in [5,11,12], that the answer is simple for some specific values of x*, such as 
x* =f. More precisely, this particular value, that will play an important role in 
subsection 4.2, has a regular infinite sequence of best approximants x j , k L  labelled by 
an integer L s l .  We have k L = f F 3 L ,  and A x = I ~ ~ , ~ ~ - x * / - ~ - ~ ~ - l / k ~ .  Hence the 
largest Bragg peak that is close to x+ = f  within a distance Ax has an intensity 
A - l / k i -  (Ax)’, in virtue of (4.2). Under the reasonable assumption that this gives 
the correct scaling for the total measure AH = H ( q ,  +27rAx) - H(q,),  we finally obtain 



Multifractal analysis in reciprocal space 3785 

AH - (Ax)’, whence the local singularity exponent a = 2 for q* = T. We now formulate 
the hypothesis that the scaling behaviour demonstrated here remains correct, in a 
statistical sense, for generic values of the wavevector. Thus the value a. = 2 shows up 
in a natural way. 

We have also studied the form of the apparent f( a) curves, in the vicinity of their 
top, and for large values of the generation label n. In analogy with the scaling behaviour 
(2.3) derived analytically in the case of the simple example considered in section 2, 
we hypothesise the following scaling form; 

(4.3) 

Figure 3 shows a plot of the scaling amplitude @ ( Q )  against Q, in the case of the 
abstract Fibonacci sequence. The data were obtained by taking (4.3) as a strict equality 
for large enough values of n (18 s n s 28). In particular, by taking the derivative of 
(4.3) at Q = 0, we obtain 

Indeed, the slope W ( 0 )  = -2.1 of the plot of figure 3 at the origin agrees with the slope 
of the lower curve of figure 2, which shows a plot of a. against l / n .  

0 5r I I I I I 
I 

-1 51 I I 1 I 

-03 - 0 2  - 0 1  0 0 1  0 2  0 3  
Q 

Figure 3. Plot of the amplitude @(Q) which charac- 
terises the scaling form of the exponent T ( Q ) ,  and 
of the related apparent f(a) curves, in the case of 
the abstract Fibonacci sequence. The plotted curves, 
corresponding to 18 G n G 28, collapse in a very satis- 
factory way. 

0.  I I I I 

- 5  I I 1 
0 2 4 6 8 10 

n 

Figure 4. Plot of the curvature C of the apparent 
f(a) curves of the abstract circle sequence, against 
the generation label n. The straight line has a slope 
s 2 -0.46. 

4.2. The circle sequence 

We have mentioned in section 1 that the present study has been mostly motivated by 
a series of recent works [ 1-51, devoted to structures ‘beyond quasiperiodicity’, with 
either an unbounded density fluctuation [ 1-31, or a singular continuous Fourier 
intensity [4,5]. Throughout these investigations, a central mathematical object was the 
following binary squence: 

E n  = x a ( n w )  (4.5) 
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UC 

where w and A are two arbitrary parameters, between 0 and 1, and xA denotes the 
characteristic function of the interval [O; A] on the circle, whence the name of the 
sequence. Equivalently, the multiples nw of the ‘frequency’ w are taken modulo unity. 
The binary quantity E ,  is thus equal to 1 (respectively 0) if the fractional part of nw 
lies between 0 and A (respectively between A and 1). 

The abstract circle sequence is easily shown to be quasiperiodic for any values of 
the parameters w and A. The Fibonacci sequence is recovered in the special case 
w = A = T-*,  where T denotes the golden mean. More generally, whenever A assumes 
the form 

A = r w  mod1 (4.6) 

where r is any integer, both the abstract sequence and the associated binary structure 
are quasiperiodic, and have a bounded fluctuation with respect to their average lattice. 

For generic values of w and A, when the ‘Kesten condition’ (4.6) is not satisfied, 
the density fluctuation is not bounded [13], and the Fourier transform of the binary 
structure has been conjectured to be singular continuous [4, 51, although that of the 
abstract sequence is quasiperiodic. The model therefore exhibits a change in the nature 
of the Fourier intensity when going from the sequence to the structural model. Among 
other phenomena, this instability is reminiscent of the transitions from quasiperiodic 
to chaotic motion that occur in some simple driven quantum systems. 

The particular case defined by the values 

0 = T - 2  A = f  (4.7) 

A + C A C  

C + ABCAC. 
B+ACCAC 

has been most studied, since it corresponds to the simplest of the self-similar sequences 
that are interesting, in the sense of not fulfilling the Kesten condition. This particular 
sequence, to be called simply the ‘circle’ sequence in the following, is generated by a 
substitution acting on three letters, namely 

The associated matrix 

(4.8) 

(4.9) 

has a characteristic polynomial P ( A )  = ( A  + l ) ( A 2  -4A - l),  which is not irreducible 
over the integers. The eigenvalues are T ~ ,  -1 and - T - ~ .  Since one eigenvalue has unit 
modulus, the circle sequence is a marginal case, with respect to the Bombieri-Taylor 
classification discussed in subsection 3.3. 

The sequence E,  of (4.5) is recovered by the identification 

A : & = l  B : & = 1  C : & = O .  (4.10) 

In analogy with the Fibonacci sequence, we introduce the words A,,, B, and C,,, 
obtained by acting n times with the substitution crc on the letters A, B and C. The 
Fourier amplitudes of the associated words for the abstract sequence are denoted by 
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gt, gf and gF, whereas the amplitudes for the structural model are denoted by Gf, 
GE and GF. The first set of amplitudes obey the recursion relation 

A g,+, = g:+exp(-iquZ)gt+exp[-iq(uF+ 4 ) k Z  

gntl = g::+exp(- iqu~)gfj+exp[- iq(u~+ v f j ) I d + ,  

gEtl = gt+exp(-iqut)g:+exp[-iq(u::+ 43 Ig t+ l  (4.11) 
C 

with the initial conditions 
g t  = g: = e-iq g: = 0. (4.12) 

The numbers of atoms of these words can be expressed in terms of the Fibonacci 
numbers, namely 

U:: = L + l  U: = U: = F3,,+,. (4.13) 

The abstract circle sequence is quasiperiodic, with Bragg peaks for values of q in the 
same module (4.1) as the Fibonacci sequence, with the restriction that k is an odd 
integer. Hence the Fourier intensity of the circle sequence is also expected not to be 
a multifractal measure. 

In order to check this lack of multifractality, we have still used the curvature C. 
Figure 4 shows a plot of this quanitity, for the Fourier transform of the words C,,  
against the generation label n, up to n = 9. The word C, contains F,, = 514 229 letters. 
An asymptotic linear growth of the curvature C with a slope s==-0.46, shown as a 
straight line on the plot, is clearly seen. Figure 5 shows a plot of the abscissa a. of 
the top of the f ( a )  curves, against 1/ n. Just as in the Fibonacci case, the data points 
converge to the limit value ao=2.  A. mechanism analogous to that described in 
subsection 4.1 can be expected to give rise to such a simple limit value. 

We turn now to the more interesting case of the associated binary structural model, 
defined by associating two bond lengths to the letters, according to the rule 

A :  I =  1 + (  B :  I =  1 + (  C : l = l .  (4.14) 
The Fourier amplitudes G t ,  G: and G: obey recursion relations which are formally 
identical to (4.1 l ) ,  but with different initial values, namely G: = G: = exp[ -iq( 1 + e)], 

1 85 4 

1 801 I 1 I I I 
0 0 1  0 2  0 3  

1 / n  

Figure 5. Plot of the abscissa a" of the top of the 
apparentf( a) curves for the abstract circle sequence, 
against the reciprocal of the generation label n. The 
limit value is a. = 2. 

I I I 

0 1  1 2 3 1 4  5 
am," U amnx 

Figure 6. Plot of t h e f ( a )  curves associated with the 
structural model generated by the circle sequence. 
The plotted data correspond to the values 4 s  n s 7 
of the generation label. The values of a,,, and a,,, , 
indicated by arrows, have been extracted from a vast 
amount of data, obtained with many different values 
of 6 and z. 
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We have been led to conjecture in previous works [4,5], that the Fourier intensity 
is generically a purely sc measure. We may therefore expect a non-trivial f ( a )  curve 
in the limit of an infinite structure. 

Let us emphasise the following point. The statistical properties of the Fourier 
transform of the binary structure associated with the circle sequence depend a priori 
on two parameters, namely the value of 5, i.e. the ratio of both bond lengths, and the 
number z of ‘Brillouin zones’ that enter the computation, i.e. the range of wavevectors 
explored. Our goal has been rather ambitious, namely to determine whether the circle 
sequence possesses a universal f ( a )  curve, independently of both parameters 6 and z. 

Figure 6 shows a plot of the f ( a )  curves for the words C,,, for 4 G n G 7, and for 
5 = -7’ (the same value as for figure l ) ,  and z = 3 ‘zones’. Although the data vary with 
the generation n in a non-monotonic fashion, they tend to indicate convergence toward 
a limit smooth curve. We have repeated the numerical computation for many values 
of 6, and up  to z = 10 ‘zones’. The behaviour shown in figure 6 is observed quite 
generically. The intrinsic scatter of the data decreases in a roughly systematic way 
when both n and z are increased. The vast amount of data in our possession suggests 
the existence of a well defined limit f ( a )  curve, attached to the circle sequence in an 
intrinsic way, independently of the parameters 5 and z. The extremal values amin and 
a,,, of the exponent a, around which the convergence of data is the worst, are indicated 
by arrows on the plot, and given below and in table 1. The observed poor convergence 
in the vicinity of the extremal values of the exponent a, corresponding to f ( a )  = 0, is 
explained by means of the interpretation in terms of box counting. Indeed, (1.7) shows 
that the smaller f ( a )  is, the smaller the relevant number of boxes, or wavevectors. 
Fluctuation effects thus become more important in the ‘tails’ of the f ( a )  spectrum. 

The structural model generated by the circle sequence is thus our first example of 
a genuine multifractal Fourier transform, with a non-degenerate f (  a) curve. According 
to the discussion of subsection 3.4, the multifractality of a Fourier transform implies 
in particular that the following characteristic quantities assume non-trivial values, 
which have been extracted from our row data concerning many different values 6 
and z :  

= 1.60 amin z 0.15 a,,, = 3.8 ay1 z 0.55 d p z  0.86. (4.15) 

This study can be put in perspective with respect to our previous works [4,5]. The 
exponent p characterising the fall-off of the integral I N ,  defined in (3.26), has been 
evaluated numerically in [4] to be p = 0.16*0.04. This quantity is related to the present 
multifractal formalism: it can indeed be argued that p = 4( 1 - D,,2) .  Secondly, the local 
exponent a has been evaluated analytically in [5] for a dense but countable set of 
values of the wavevector q. The outcome turns out to depend in a continuous way on 
both q and 6, and can assume any value between a = 0 and a = 2. Hence there is a 
countable set of values of q for which a is less than amin. This is not too much of a 
paradox, since the multifractal analysis is a statistical and global approach, that may 
omit ‘thin’ (e.g. countable) sets with a vanishing dimension. 

4.3. The Thue-Morse sequence 

The Thue-Morse sequence is one of the most famous arithmetic sequences. It is a 
binary sequence ( e k  = * l )  defined as follows. Let sk be the sum of the digits (0 or 1) 
of the representation of the integer ( k  - 1) in base two. Then the kth symbol &k of the 
sequence is 1 (respectively -1) if sk is even (respectively odd). The Thue-Morse 
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sequence has been the subject of much mathematical activity (see [ 141 for a review). 
We have chosen to study the Thue-Morse sequence in the present context because of 
its conceptual simplicity, and the richness of the behaviour of its Fourier transform. 

Among other possible definitions, the Thue-Morse sequence can be constructed 
by means of the following substitution, acting on two letters: 

A + A B  
B+BA 

followed by the identification: 

A : & = l  B : & = - l .  

(4.16) 

(4.17) 

Let A, and B, denote the words obtained by acting n times on the letters A and B 
with the substitution uTM. These words contain 2" letters. The associated Fourier 
amplitudes gf and gf :  for the abstract sequence obey the recursion relations 

(4.18) B gf+l  = g i  + exp(-i2"q)gf: g,+l = gf: + exp(-i2"q)gf 
with the initial conditions 

g$ = -go" = e-'q. (4.19) 

Owing to the symmetry of both the recursion relation (4.18) and the initial values 
(4.19), the Fourier amplitudes can be written explicitly in the form of finite products. 
The associated intensities (structure factors) are 

n - 1  

S, = 2-"lgfI2 = 2-"lgf:I2 = n [2 sin2(2"-'q)] n f O .  (4.20) 

These Fourier intensities can be shown (see, e.g., [15]) to obey a power law of the 
form (3.24) for every rational value of x = q / ( 2 ~ r ) .  Let us just state the results. Let 
q = 2nj/k, with j and k integers, and k odd. Then the sequence 2"-'q (mod 277) of 
the phases entering the product in (4.20) is eventually periodic, with some period p s k. 
This means that there exists m, such that 2"+'q = 2"q (mod 27r) for any m 2 mo. It is 
then easy to derive from this observation the scaling law 

Sn(2 r j /k )  -2n( ' -e~/k) ,  (4.21) 

This definition of the exponent a coincides with that of section 3, by virtue of (3.25). 
The explicit expression of the exponent is the following: 

m =O 

1 m = m o + p  

1 - a l ,k  = 2y,/k-1 =- 1 ln[2 sin2(2"nj/ k)]. (4.22) 

It is then easy to realise that the same scaling law (4.21), with the same value of the 
exponent a , / k ,  also holds for any wavevector of the form q = 27r(j/k+ M)/2N,  for any 
integers M and N ( N  2 1). The strongest of the local singularities, namely the smallest 
of the exponents a, occurs for q = 27r/3, and all the related values of the wavevector, 
where we have 

p In 2 m = m o + l  

In 3 
In 2 a,/3=2--=0.415 037. (4.23) 

The Fourier intensity therefore exhibits an infinity of different local exponents a,,,, 
ranging from a113 to m. It has been argued in [ 12,151 that an infinity of those exponents 
are smaller than unity, and thus correspond to peaks. 
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The Fourier intensity measure of the Thue-Morse sequence also exhibits a dense 
set of essential singularities. In order to demonstrate this, we notice first that (4.20) 
implies the following functional equation for the intensities S ,  (4):  

(4.24) 

It can be shown, by iterating (4.24), that the structure factors behave for small 
wavevector as S,(q) - 2n(n-2)q2n. Hence the limit distribution function H ( q )  vanishes 
more rapidly that any power of q near q = 0. In a more quantitative way, by requiring 
that the above estimate be stationary with respect to n, we obtain the following rough 
estimate: 

S n  ( 9 = 2 sin2( 4 / 2) s n  - 1 (2q 1. 

(4.25) 

A similar essential singularity is also present at any dyadic value of the wavevector, 
of the form q = 2 ~ M / 2 ~ ,  for arbitrary integers M and N, with N a 1. 

Let us now turn to the multifractal analysis of the Fourier intensity measure. 
According to the procedure described in subsection 3.4, we have to consider wavevectors 
of the form q = 2mn/2", with m ranging from 1 to 2", when dealing with the partial 
intensity S,. Since the intensities are obviously even functions of q, and 2rr-periodic, 
the range of m can be limited to 2"-'. Moreover, (4.20) shows that S, vanishes identically 
for even values of m. The vanishing of these amplitudes is somehow related to the 
essential singularities described above. We have therefore to adapt the definition (1.4) 
of the partition function Z(Q),  by restricting the sum to odd values of m, ranging 
from 1 to 2"-' - 1, i.e. 2"-' values of the wavevector, with an appropriate normalisation, 
namely 

(4.26) 

For positive values of the parameter Q, the data (plotted in figure 7) converge very 
smoothly towards a limit f ( a )  curve. For any fixed negative value of 0, the data for 
LY corresponding to the successive finite words go rapidly to infinity, roughly linearly 
in n. This phenomenon seems to be related to the presence of essential singularities 

I 

0 2- 
O L C  / i 

i 
I 

0 f 0 5  I O  1.5 2 0  
am," a 

Figure 7. Plot of the left part of the f(a) curves 
associated with the abstract Thue-Morse sequence, 
for a generation label 1 0 s  n S 16. The lack of conver- 
gence of the right parts of the curves is commented 
on in the text. 

I 1 1 7 -  

7- 4 
I 

I 5 .  1 I 1 I I 
0 0 0 5  010 0 1 5  0 2 0  025 

l/n 

Figure 8. Plot of the abscissa a,  of the top of the 
apparent f(a) curves for the abstract Thue-Morse 
sequence, against the reciprocal of the generation 
label n. The limit value is a, = 2. 
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i 

of the form (4.25) at dyadic value of the wavevector, since this dense set of points 
corresponds formally to a local exponent a = W. 

The Thue-Morse sequence therefore gives rise to ‘half a multifractal spectrum’. 
The minimal value amin of the exponent a, corresponding to the Q + CO limit, agrees, 
within the accuracy of the numerical work, with the value of the local exponent al/3, 

given in (4.23) 

(4.27) 

We are thus facing a very favourable case, for which we have been able to identify 
which values of q have the local singularities corresponding to the exponent a = amin. 

The abscissas a. of the tops of the f( a )  curves of successive finite words are shown 
on figure 8, plotted against l / n ,  up to n = 18, i.e. 218 = 262 144 letters. The data converge 
clearly linearly toward the limit value 

a0 = 2. (4.28) 

As a matter of fact, this simple result can be derived analytically, by differentiating 
the partition function (4.26) appropriately. 

The curvature C of the f ( a )  curves at their top, introduced in (2.4), is shown in 
figure 9, plotted against 1 J n. The numerical values exhibit a reasonably linear conver- 
gence toward a limit value C = -0.07. The left part of t h e f ( a )  spectrum is thus regular 
at its top, although this corresponds to an endpoint of the curve. 

Finally, the other remarkable values associated with the multifractal spectrum are 

a ,  = 0.73 dp= 0.89. (4.29) 

amin = a 1/3 a 

I 
j 

- 0 .051  4 

- 0 . 1 5 1  7 
-0.201 1 I I I I I 

0 0.05 0 . I O  0.15 
1 /n 

Figure 9. Plot of the curvature C of the f ( a )  curves 
of the Thue-Morse sequence at their top, against the 
reciprocal of the generation label n. A non-trivial 
limit value C = -0.07 shows up very clearly. 

c l  - 5  < 
-10 

-151 1 I I 1 1 
0 4 8 12 16 20 

n 

Figure 10. Plot of the curvature C of the apparent 
f(a) curves for the abstract Rudin-Shapiro 
sequence, against the generation label n. The straight 
line has the slope s = - I n 2 ,  derived in a heuristic 
way in the text. 

4.4. The Rudin-Shapiro sequence 

Just as with the Thue-Morse sequence studied in the last section, the Rudin-Shapiro 
sequence is a very well known object in the area of arithmetical sequences (see [14] 
for a review). Consider again the representation of the integer (k - 1 )  in base two, 
and let tk be the number of times the string ‘11’ shows up in this expansion. The kth 
term of the Rudin-Shapiro sequence is then &k = 1 (respectively E& = -1) if tk is even 
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(respectively odd). One alternative definition of this binary sequence involves the 
following substitution, acting on four letters: 

1 A+AC 
B + D C  
C+AB 

(4.30) 

followed by the identification 

A : & = l  B : & = - l  C : & = 1  D :  E = -1. (4.31) 

In analogy with the previous examples, we denote by A,,, . . . , 0, the words of length 
2", produced by the action of n times the substitution on the initial letters, and by 
g, , . . . , gf: the associated Fourier amplitudes for the abstract sequence. These quan- 
tities obey the recursion relations 

A 

gt+ ,  = gt+exp(-i2"q)g: 

g,C+l = g t  +exp(-i2"q)g; 

g:+l = gR+exp(-i2"q)g,C 

g,+l = 8 + exp(-i2"q)g: 
(4.32) 

D 

(4.33) 

It can be shown by induction on n, using (4.32), (4.33), that the Fourier amplitudes 
obey the following equalities: g t  = -gR and gf = -g, . There are thus only two 
independent amplitudes. This noticeable property allows one to rearrange the recursion 
equations obeyed by the associated Fourier intensities. These equations assume a 
simple form if we introduce three real quantities X,,,  Y,, and Z,, according to 

C 

s: = 2-" I gt12 = 1 + 2, 

2-"gf(g:)* = x,, + i Y,,. 
s: = 2-"lg:/2 = 1 - 2, 

(4.34) 

In terms of these variables, we have the linear recursion formula 

.') (4.35) 
0 0 

with 0, = sin 2"q -cos 2"q 
-cos2"q -sin2"q 0 

( Z ) = o f l ( ; )  ( 
together with the initial conditions X ,  = -1, Yo = 2, = 0. It can be checked that the 
matrices 0, are orthogonal (OLO,, =I), and thus represent rotations in the three- 
dimensional XYZ Euclidean space. Since the initial point lies on the unit sphere, the 
whole sequence of points (X, , ,  Y,, 2,) also lies on the unit sphere. In particular, we 
have the inequality lZ,l d 1, and therefore 0 s  S,, d 2, for all values of the generation 
label n, and of the wavevector q. In other words, the Fourier intensity is bounded, and 
no value of q can have a local exponent CY less than unity. 

Besides the rigorous results mentioned just above, (4.35) has suggested to us the 
following heuristic argument. For a generic value of q, and for n large, the point 
(X, , ,  Y, , ,Z, ,)  is obtained from the initial point ( X o ,  Yo,Zo) through the action of a 
large number of non-commuting rotations, with generic angles. This observation 
suggests the possibility that, when the wavevector q is varied between 0 and 27r, the 
representative point is distributed uniformly over the unit sphere. If this assertion is 
true, it implies in particular that the third component 2, is distributed uniformly over 
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the range [-1; 11, and that the intensities Sf and Sf: are distributed uniformly over 
the interval [O; 21. We have checked this last statement numerically, taking, e.g., the 
equally spaced values of q dictated by the formalism of subsection 3.4. The uniform 
distribution of the intensities is verified in a very accurate fashion. 

As a matter of fact, it is known in the mathematical literature (see, e.g., [14]) that 
the Fourier measure of the Rudin-Shapiro sequence is purely AC (abolutely con- 
tinuous), the intensity associated with the infinite sequence being simply 

S ( q )  = 1 / ( 2 r ) .  (4.36) 

This value coincides with the average of the intensities Sf and Sf: of the finite words, 
over the uniform distribution discussed just above, as it should. 

The striking result (4.36) is equivalent to saying that the two-point correlation 
function C ( r )  of the sequence vanishes identically, except for its value at coinciding 
points, namely 

(4.37) 

where S on the right-hand side stands for Kronecker's symbol. 
Let us now turn to the multifractal analysis of the Fourier intensity. Figure 10 

shows the numerical values of the curvature C of the f (a) curves at their top, calculated 
from the intensities Sf, and plotted against the generation label n, up to n = 20, i.e. 
2*' = 1048 576 letters. A very clear linear behaviour can be seen, thus confirming our 
expectation, namely the lack of multifractality. 

The observed linear growth of the curvature C as a function of the generation label 
n can be checked as follows. We have argued that the intensity Sf(q) is distributed, 
for n large enough, uniformly over the interval [O; 21. We are therefore in the situation 
of the example introduced in section 2, in order to illustrate finite-size effects. The 
uniform distribution over [O; 21 plays the part of g ( x )  dx. We can therefore use ( 2 . 5 ) ,  
which leads to the estimate C = - n  In 2 in the present case. A straight line with slope 
s = -In 2 has been drawn on figure 10. The data agree with this heuristic prediction 
in a very satisfactory way. 

4.5. Examples of non-pv substitutions 

This last section is devoted to generic substitutions, that do not have the PV property, 
discussed in subsection 3.3. More precisely, we also exclude from the present analysis 
the marginal cases where the second largest eigenvalue lies on the unit circle, and 
require that the substitution has two eigenvalues strictly larger than unity in modulus, 
in such a way that the density fluctuation diverges with a positive exponent S, defined 
in (3.34). 

The following two examples of substitutions acting on two and three letters, 
respectively, do not have any particular physical or arithmetic origin, but have, rather, 
been chosen according to a natural criterion of minimality, to be explained below. 

4.5.1. The binary case. Consider a general binary substitution (acting on two letters). 
The associated 2 x 2 matrix M has non-negative integer entries. Its characteristic 
polynomial is P(A) = det(A1- M) = A 2  - SA + p ,  where s = tr M and p = det M are the 
invariants of the matrix. Let A I  and A 2  denote the eigenvalues of M. In virtue of the 
Perron-Frobenius theorem, the root with largest modulus, say A I ,  is real, and larger 
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than 1. The other root is then also real. We are thus left with two classes of binary 
non-pv substitutions, namely the following. 

(i) A 2  < -1  < 1 < A l .  This occurs for s 3 1 ,  and p s -s -2. The minimal example 
(with the smallest possible value of A , )  corresponds to s =  1 and p = - 3 ,  yielding 

(ii) l < A , < A , .  This occurs for s s p < s 2 / 4 ,  implying in particular s 2 5 .  The 
minimal solution s = p = 5  yields A,,2=i(5*&)=(3.61803, 1.381 97). 

The minimal non-pv subsitution acting on two letters, in the sense that its Perron- 
Frobenius eigenvalue A is the smallest, corresponds therefore to the minimal solution 
of the first class, namely s = 1 and p = -3. The associated eigenvalues, quoted just 
above, lead to a fluctuation exponent 6 50.317 10. It is easily realised that there are 
only two substitutions, up to letter permutations, which correspond to these values of 
the invariants. One of these substitutions is 

A , , , = t ( l + ~ ) 5 ( 2 . 3 0 2 7 8 ,  -1.30278). 

A + A B  
B -$ AAA. 

(4.38) 

In the following, we focus our attention on this example. 
We define a numerical binary sequence by means of the identification 

A : E = ~  B :  E = -1. (4.39) 

We introduce the words A,  and Bn, obtained by acting n times with u2 on the letters 
A and B. The numbers of letters v t  and uf:  of these words obey the recursion relation 

(4.40) 

with the initial condition v t  = U,” = 1 .  The associated Fourier amplitudes of the abstract 
sequence are given by the following recursion relations: 

B = U$+ vfl v,+1= 3u; 

(4.41) 

with the initial conditions gf = -go” = e-iq. 
Let us emphasise that this example is the first one for which nothing is known, on 

a rigorous basis, about the nature of the Fourier intensity measure, except for the BT 

argument, which tells us that there should be no atomic component (Bragg peaks). 
We have performed the multifractal analysis of the Fourier intensity measure of 

the abstract sequence generated by u2. Figure 11 shows a plot of the left parts of the 
f ( a )  curves, corresponding to positive values of the parameter Q, for the words B,, 
with a generation label n ranging from 11 to 14. The largest word has = 140 694 
letters. Although the data converge in a rather slow and non-monotonic way, there 
seems to exist a well defined limit curve. For negative values of Q, the data for a 
diverge roughly linearly with the generation label n, just as in the case of the Thue-Morse 
sequence. We attribute this lack of convergence to the possible existence of essential 
singularities in the integrated intensity H ( q ) ,  analogous to those of (4.25). We have 
checked carefully that the abscissae of the f ( a )  curves at their top exhibit a smooth 
1/ n convergence towards the limit value a. = 2, and the curvature C approaches a 
finite limit. The situation is therefore altogether very analogous to that of the Thue- 
Morse sequence. 

The characteristic values extracted from the numerical data are summarised below 

ao=2  aminz0.15 a1 J 0.44 d p  0.83. (4.42) 
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C T ~  

0 1 0.5 1 0  1.5 2 0  
amin a 

Figure 11. Plot of the left part of the f(a) curves 
associated with the words B,,-B,.,  of the abstract 
minimal non-pv binary sequence, defined in (4.38). 
The right halves of the curves do not converge. The 
value of amin, indicated by an arrow, has been 
extracted from data concerning all generations, 
up to n = 14. 

A + C  

C + BAB. 
B + A  (4.43) 

Figure 12. Plot of the f( a) curves corresponding to 
the words B,, and B,, of the abstract minimal non-pv 
ternary sequence, defined in (4.43). The values of 
amin and a,,,, indicated by arrows, have been 
extracted from data concerning all generations, up 
to n=31. 
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The substitution u3 shares with the Fibonacci substitution the property that it can be 
rewritten in terms of one single sequence of words. Indeed, if we denote by A,, B, 
and C, the words defined in the usual way, the form (4.43) of u3 implies A, = B,+l 
and C, = B,+z. It is therefore sufficient to consider the sequence of words B,. Let v, 
be the number of letters of B,, and g ,  denote the corresponding partial Fourier 
amplitude for the abstract sequence. These quantities obey the following four-term 
recursion relations: 

Bn+3 = B,B,+IB, (4.45) 

g n + 3  ={1+exP[-idYn + ~fl+l)lk?l +exp(-iqvn)gfl+, (4.47) 
v,+3 = 2v, + Y,+l (4.46) 

with the initial conditions vo = v, = v2 = 1, go = g, = - g 2  = e-’¶. 
Let us now turn to the multifractal analysis of the Fourier intensity measure. Figure 

12 shows a plot of the f ( a )  curves corresponding to the words B,, for the values 27 
and 31 of the generation label n. The larger sample has v31 = 287 867 letters. The plot 
presents only two curves, for the sake of readability. The data converge indeed in a 
non-monotonic way to a rather well defined limit f( a )  curve. The extrema1 values amin 
and a,,, have been extrapolated from data concerning all values of n, up to n = 31. 
We end this section by listing the following characteristic values: 
ao= 1.36 amin -- 0.2 amax = 3.6 crl  = 0.64 dp= 0.92. (4.48) 

5. Conclusion 

In this paper it has been proposed to use multifractal analysis in reciprocal space, in 
order to obtain novel information concerning the global behaviour of the Fourier 
transform of a structural model. In elaborating this approach, we aimed more 
specifically at a better understanding of the structures introduced in our previous 
works. Indeed, from an intuitive viewpoint, those structures exhibit a possible inter- 
mediate kind of ordered matter, between (quasi)-periodicity and amorphousness. 

The nature of the Fourier transform of these models is therefore the natural question 
to be answered, and the most precise context for doing so is the measure-theoretical 
one. As recalled in section 1, a Fourier intensity can be either atomic (Bragg peaks), 
AC (diffuse scattering), sc (‘singular scattering’), or a superposition of any of these 
three pure types of measures. The Bombieri-Taylor argument is a very efficient tool 
for characterising which structures will ‘diffract’, i.e. possess Bragg peaks. The present 
study was partly motivated by the search of a counterpart of the BT argument, which 
would tell us whether a structure possesses diffuse scattering, i.e. an AC component in 
its Fourier transform. 

By means of several examples of one-dimensional self-similar sequences and 
structures, generated by substitutions on finite alphabets, we have accumulated a good 
deal of experience concerning these matters. Table 1 presents a synthetic comparison 
between the results of our multifractal analysis of the Fourier transforms of the models, 
and information available from other sources. Table 1 also gives the numerical values 
of several characteristic quantities-when available-which are of special interest when 
dealing with the f(a) curve associated with a Fourier transform. Let us emphasise 
again the special role played by cxo, the abscissa of the top of the curve, to  be interpreted 
as the strength of the singularitiy observed for a generic wavevector q, as well as dp, 
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which represents the dimension of the set of peaks of the Fourier transform-in the 
general sense of singular scattering. 

As a general rule, it turns out that our expectations concerning the multifractality 
of Fourier transforms are confirmed. Namely, both the atomic Fourier transforms, 
made of Bragg peaks, of periodic (quasiperiodic, almost-periodic) structures, and the 
AC Fourier transforms (diffuse scattering) correspond to degenerate f( a) curves, 
consisting of one or two isolated points. Conversely, the structures for which our 
numerical analysis leads undoubtedly to a non-trivial multifractal f( a) curve certainly 
exhibit only ‘singular scattering’: their Fourier transform is a purely sc measure. 

The results summarised just above lead us therefore to formulate, as a kind of 
conclusion, the following two heuristic assertions. (a) Multifractal analysis in reciprocal 
space yields generically a non-trivial f(a) curve only when the Fourier intensity 
measure is sc, and corresponds to ‘singular scattering’. (b) Self-similar structures have 
generically a non-trivial f(a) curve only when the substitution which defines the 
‘inflation rules’ of the model does not have the PV property (namely, the second largest 
eigenvalue of the substitution matrix is larger than unity in modulus). 

These conclusions have been presented on purpose as heuristic ‘rules of thumb’, 
which hold in any practical situation, but which probably cannot be turned into rigorous 
theorems. Indeed, leaving the realm of Fourier transforms, it has been argued that one 
can construct positive measures with essentially any kind of pathology with respect to 
multifractal analysis [16], such as, e.g., AC measures with a hierarchically built 
unbounded density, which have a non-trivial f( a) curve. 
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